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a b s t r a c t

Imaging at atomic resolution based on the inelastic scattering of electrons has become firmly established
in the last three decades. Harald Rose pioneered much of the early theoretical work on this topic, in
particular emphasising the role of phase and the importance of a mixed dynamic form factor. In this
paper we review how the modelling of inelastic scattering has subsequently developed and how
numerical implementation has been achieved. A software package μSTEM is introduced, capable of
simulating various imaging modes based on inelastic scattering in both scanning and conventional
transmission electron microscopy.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A landmark paper entitled “Theory of image formation by
inelastically scattered electrons in the electron microscope” was
published 30 years ago by Helmut Kohl and Harald Rose [1]. There
they observed that “reviews on image formation treat the con-
tribution of inelastically scattered electrons as a deleterious side
effect” but suggested that “it seems worthwhile to examine image
formation by inelastically scattered electrons in more detail”. This
insight spurred the subsequent development of high resolution
spectroscopic imaging modes [2–5], but it would be fifteen years
before the spectroscopic single atom imaging envisaged by Kohl
and Rose was realised [6], and longer before atomic resolution
spectroscopic imaging really came into its own [7–18].

In their seminal paper, Kohl and Rose [1] outline a quantum
mechanical theory of imaging which considers both elastically and
inelastically scattered electrons. Early on in their paper they address
the importance of quantum mechanical phase in electron scattering
and show how the concept of phase is related to a four-dimensional
mixed dynamic form factor [19] encapsulating the essential physics of
inelastic scattering. Kohl and Rose presented a clear conceptual
picture to show that accounting for phase is essential, which we
think worth repeating here. Consider the inelastic signal from an
atom illuminated by an electron probe consisting of the coherent
superposition of two plane waves with different incident angles, as
shown in Fig. 1. A purely kinematic analysis might focus on the

scattering angles between each of these plane waves and the detector.
However, the relative phase of the two waves is critical in determin-
ing where the electron density in their interference pattern sits
relative to the atom position, something physical intuition correctly
identifies as being essential in determining the resultant signal. In
essence, the mixed dynamic form factor describes the contribution to
the signal due to the interference between pairs of plane waves
(Fourier components) in the probe. Though less obvious, it turns out
that knowing the contribution from each pair of plane wave compo-
nents is sufficient to determine the total contribution from an
arbitrarily shaped incident wave field. This is important in scanning
transmission electron microscopy where the incident convergent
probe contains a multitude of different plane wave components
[20,21].

Rose and co-workers generalised the work in Ref. [1] in terms
of a mutual coherence function to also encapsulate incoherence in
the probe electrons, in particular temporal incoherence [22]. They
elucidated the basic governing equation for the mutual coherence
function and discussed its solution via a generalised multislice
formulation based on four dimensional propagators. Though the
mutual coherence formalism has been used to gain conceptual
insight into coherence in inelastic scattering (e.g. [23]), such an
approach, involving four dimensional Fourier transforms, is
demanding of computational resources – both in terms of memory
and processing power. As we shall see in what follows, much of
the intervening development has focused on ways of making
calculations sufficiently tractable so that they may routinely be
used to analyze experimental images.

Fundamental aspects of inelastic scattering in solids were
addressed over a bit more than a decade, starting in the first half of
the 1980s, by several authors [24–37]. In particular, Dudarev et al.
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proceeded on the basis of a one particle density matrix, related to the
mixed dynamic form factor, and its accompanying governing equa-
tion, the so-called kinetic equation [36]. Building on some of the
earlier work, Allen and Josefsson presented a comprehensive theory
of inelastic scattering, implicitly incorporating the mixed dynamic
form factor, in a formulation based on Bloch waves [37]. The physical
significance of the mixed dynamic form factor and its relation to the
density matrix was comprehensively investigated by Schattschneider
and co-workers [38,39]. How the mixed dynamic form factor arises
and its role in inelastic scattering will be discussed in Section 2.

2. The mixed dynamic form factor

In this section we will show how the mixed dynamic form factor
arises. Let us take as our starting point the following equation
describing an inelastic scattering event that occurs at a specific depth
zi into the specimen [40,41], measured from the entrance surface of
the specimen and along the optical axis:

ψnðP; r; ziÞ ¼ � iσnHn0ðr; ziÞψ0ðP; r; ziÞ: ð1Þ
The probe wave function ψ0 at the depth zi depends on the
co-ordinate r in a plane perpendicular to the optical axis. The
functional dependence denoted by P could be the tilt in conventional
transmission electron microscopy, specified by the tangential com-
ponent of the wave vector of the incident electrons k0t or, in
scanning transmission electron microscopy, it might specify the
probe position R on the surface of the specimen. For notational
simplicity, we will not show the parametric probe dependence P
explicitly everywhere in what follows, reintroducing it only when we
reach key results. The projected inelastic transition potential Hn0

describes an inelastic transition, via a Coulomb interaction, at the
depth zi from an initial state of the specimen labelled 0 to a final state
labelled n, and its modulus squared gives the probability that
transition will occur [41]. Here σn ¼m=2πℏ2kn is the interaction
constant for the fast electron after energy loss, in which m is the
relativistic mass of the electron and kn is the wave number of the fast
electron after the inelastic transition. In summary, Eq. (1) shows that
ψn, the inelastic wave function for the fast electron after the
excitation, is proportional to the product of Hn0 and ψ0.

It is worth emphasising at this point that ψn would only be
physically observed in isolation if we had a simultaneous, inde-
pendent measurement showing that the specimen final state n
was realised. Since this is almost never the case, the rules of
quantum mechanics dictate that we must sum over all final states
consistent with the quantities measured. This leads to the density
matrix formulation. Some may therefore object to the use of the

term “wave function” to describe ψn since it seems to suggest a
physical reality to the quantity, whereas an infinite number of
different final state bases fψngmay be used to generate the density
matrix, which is related to what is physically measured [42].
However, the ψn are valid building blocks from which to construct
the density matrix if desired. Moreover, this approach can be made
efficient via considered selection of the specimen basis states [41],
and we will persist in using the term “wave function” to
describe them.

In three dimensions the transition potentials have the form

Hn0ðxÞ ¼
e2

4πϵ0

Z
un

f ðx0Þ 1
jx�x0juiðx0Þ dx0; ð2Þ

where uiðxÞ and uf ðxÞ represent initial and final state wave
functions in three dimensions. The prefactor contains the magni-
tude of the charge on an electron e and the permittivity of free
space ϵ0. The assumption here is that the inelastic transition
effectively occurs in vacuum but this can be generalised, if needed,
by incorporating a suitable dielectric function in Eq. (2). The
projected transition potentials Hn0ðr; ziÞ in Eq. (1) are obtained as
follows [40,41,43]:

Hn0ðr; ziÞ ¼
Z

Hn0ðxÞe2πiðk0 �knÞz dz; ð3Þ

where k0 is the wave number of the incident electron before the
inelastic scattering event. Eq. (3) implicitly assumes that the
inelastic transition is localised to a particular depth zi in the
crystal. This is generally agreed to be a reasonable assumption
for inner-shell ionisation by fast electrons because the core
electrons are so tightly bound [27,28]. In such cases, the range of
the z integration along the optical axis about the depth zi need
only extend over a finite range where the integrand is significantly
different from zero. The more general case introduces many
subtleties [44] and will not be considered here.

Examples of selected projected transition potentials, as intro-
duced in Eqs. (1) and (3), are shown in Fig. 2 for the L2;3 ionisation
edge in Si. In particular, note the differing localisations of the
dipole and quadrupole transitions in Fig. 2(a) and (b) respectively.
An asymmetric quadrupole transition is shown in Fig. 2(c) and (d).
An appreciation and understanding of the scale and extent of
these potentials relative to the illuminating, elastically scattered
wave is necessary to correctly interpret inelastic images based on
inner-shell ionisation. The transition potentials are calculated in an
angular momentum basis and details may be found in Ref. [45].

We now elucidate how an inelastic wave is generated for a
100 keV plane wave incident on a specimen of Si3N4. Fig. 3 shows
the probability density for an electron which undergoes inelastic

Fig. 1. Schematic showing how the relative phase of incident plane waves affects the electron density in the vicinity of an atom.
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scattering within a specimen of Si3N4 oriented along the [0001]
zone axis, for a range of depths. The inelastic transition takes place
in the column of Si atoms indicated by the white (larger) arrow on
the projected potential (a thermally smeared potential for elastic
scattering) displayed in the panel on the bottom, right-hand side
of Fig. 3 and at a depth of approximately 61 Å (21 unit cells into the
specimen). We assume ionisation of a Si L2;3 electron in the Si
atom, specifically via the ðl¼ 1;ml ¼ 0Þ-ðl0 ¼ 0;m0

l ¼ 0Þ dipole
transition. The transition potential for this transition (which is
pure imaginary) is shown in the panel to the left of the projected
potential for elastic scattering. Elastic channelling of the probe up
to 61 Å is illustrated in the first two and a half rows in Fig. 3. After
ionisation (see the green box) the wave function describing the
electron, with wave vector reduced according to the energy loss,
has probability density localised around the atom which has been
ionised and is, to a rough first approximation, an outgoing
spherical wave emanating from the column of Si atoms. However,
probability density is evident on surrounding columns, even
immediately after the ionisation event. This is due to the deloca-
lised nature of this particular inelastic transition. There is con-
siderable overlap between Hn0 and ψ0 in Eq. (1) and in the vicinity
of the ionisation event some features of the elastic contrast are
preserved. This is an example of a partial preservation of elastic
contrast. (For more delocalised inelastic interactions, a larger
amount of elastic contrast can be preserved [46]). Channelling of
the inelastically scattered electron then occurs as it propagates to
the exit surface, with increasing probability density on the
adjacent N column, indicated on the bottom right of Fig. 3 by
the cyan (smaller) arrow, clearly evident.

Now consider rather a focused scanning probe situated above
a column of N atoms the specimen of Si3N4, the column indicated
by cyan (smaller) arrow in the panel on the bottom, right-hand

side of Fig. 4, where once again a thermally smeared, projected
potential for elastic scattering is displayed. The probe parameters
are given in the figure caption. Initially the probe is focused on
the N column and cross talk with the adjacent Si column,
indicated by the white (larger) arrow, becomes evident in the
first two and a half rows of the figure. Ionisation of a L2;3 electron
in a Si atom in the adjacent column occurs at a depth of 61 Å,
once again via the ðl¼ 1;ml ¼ 0Þ-ðl0 ¼ 0;m0

l ¼ 0Þ dipole transition.
As a result of the inelastic interaction we see that the intensity on
the Si column becomes larger than that on the N column.
However, due to the long range nature of the dipole transition
probability, as can be seen in the panel second from the right at
the bottom of Fig. 4, the overlap with the probe is such that
substantial intensity remains on the N column. Once again, there
has been a degree of preservation of elastic contrast. The prob-
ability density then evolves slowly as one propagates towards the
exit surface of the specimen.

After an inelastic transition has occurred, the wave function of
the fast electron can be considered to be one of the final states in
the set fψng. Not only is the energy of the fast electron probe
reduced by the inelastic scattering, but, since the transition poten-
tial Hn0ðr; ziÞ is complex, the amplitude and phase of the wave
function also changes. The important point to note is that the
inelastic wave has a well defined phase. Fourier transforming Eq. (1)
we obtain

Ψ nðq; ziÞ ¼ � iσn

Z
Hn0ðr; ziÞψ0ðr; ziÞe�2πiq�r dr: ð4Þ

A density matrix can be defined in q space by

∑
n
Ψ n

nðq; ziÞΨ nðq0; ziÞ: ð5Þ

Fig. 2. Selected projected transition potentials for ionisation of the L2;3 edge in Si (1 eV above the edge) using an angular momentum basis and 100 keV incident electrons.
The initial and final states for the plotted transitions are ðl;mlÞ ¼ ð1;0Þ and (a) ðl0 ;m0

lÞ ¼ ð0;0Þ, a dipole allowed transition and purely imaginary; (b) ðl0 ;m0
lÞ ¼ ð3;0Þ, a quadrupole

allowed transition and purely real; and the (c) real and (d) imaginary components of ðl0 ;m0
lÞ ¼ ð3;1Þ, a quadrupole allowed transition. Each transition potential is on its own

scale: (a) �0.09 to þ0.09 Å eV1/2, (b) �0.07 to þ0.07 Å eV1/2 and (c) and (d) �0.87 to þ0.87 Å eV1/2.
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Consider the case of energy-filtered transmission electron micro-
scopy [47,48]. The density matrix in Eq. (5) may now be propagated
in 4D (which involves the use of 4D Fourier transforms) to the exit
surface of the specimen and then through the lens using a 4D lens
transfer function. The diagonal elements of the resulting density
matrix in real space provide the energy filtered image. Alternatively,
one can propagate each of the wave functions in Eq. (5) separately
to the exit surface (which involves 2D Fourier transforms), apply a
2D lens transfer function and obtain the contribution from this final

state in the image plane. The contributions from all final states are
then added incoherently. This yields the same image but is the
preferred numerical procedure in terms of both memory and
processing requirements.

Now let us discuss scanning transmission electron microscopy.
There is no post specimen imaging lens; instead a detector (spectro-
meter) is positioned in the diffraction plane. We note that for a large
enough acceptance angle on the detector, the subtleties due to the
subsequent channelling of the inelastically scattered electron are

0 Å

23 Å

47 Å

70 Å

93 Å

116 Å

140 Å

13 Å

10

Fig. 3. Electron probability density of the probing electron within a specimen of Si3N4, along the [0001] zone axis, in the conventional transmission electron microscopy
geometry (plane wave incidence). The depth within the specimen increases in steps of 2.9 Å, moving from left to right. Each image is scaled between zero and unity. A 100 kV
accelerating voltage is assumed. The position of columns of Si and N atoms is indicated by the brighter (larger) circles and of the columns of N atoms by the dimmer (smaller)
circles in the projected potential shown on the bottom right of the figure. An ðl¼ 1;ml ¼ 0Þ-ðl0 ¼ 0;m0

l ¼ 0Þ transition, 1 eV above the Si L2;3 ionisation edge (transition
potential second panel from right, bottom) occurs at a depth of 61 Å (green box) in the column indicated by the white (larger) arrow on the bottom right panel. The N column
indicated by the cyan (smaller) arrow is referred to in the text. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this article.)
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integrated over [49,50] and a similar result can be obtained via a free
space propagation to the detector. In that case thewave function in the
diffraction (detector) plane is given directly by Eq. (4). The recorded
signal is obtained by multiplying by a current conversion factor kn=k0
[36], taking into account the pertinent final states and integrating over
the appropriate detector aperture D in the diffraction plane. This yields

IðziÞ ¼
Z
D
∑

na0

kn
k0

Ψ nðq; ziÞ 2dq
����

¼
Z
D
∑

na0

kn
k0
σ2
n

Z
Hn0ðr; ziÞψ0ðr; ziÞe�2πiq�r dr 2dq;

��
���� ð6Þ

where Eq. (1) has been used. Expanding the modulus squared and
reordering the integrations yields

IðziÞ ¼
2π
hv

∬ψ n

0ðr; ziÞWðr; r0; ziÞψ0ðr0; ziÞ dr dr0; ð7Þ

0 Å

23 Å

47 Å

70 Å

93 Å

116 Å

140 Å

10 Å

10

Fig. 4. Electron probability density of the probing electron within a specimen of Si3N4, along the [0001] zone axis in the scanning transmission electron microscopy
geometry (focused probe incidence). The depth within the specimen increases in steps of 2.9 Å, moving from left to right. Each image is scaled between zero and unity.
A 100 kV accelerating voltage is assumed. The position of columns of Si atoms is shown by the brighter (larger) circles and columns of N atoms by the dimmer (smaller)
circles in the projected potential shown on the bottom right-hand side of the figure. The aberration-free probe is initially focused on the N column indicated in that panel by
the cyan (smaller) arrow and is defined by a probe forming aperture of 25 mrad (0.68 Å�1). An ðl¼ 1;ml ¼ 0Þ-ðl0 ¼ 0;m0

l ¼ 0Þ transition, 1 eV above the Si L2;3 ionisation edge
(transition potential second panel from right, bottom) occurs at a depth of 61 Å (green box) on the adjacent Si column indicated by the white (larger) arrow. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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where

Wðr; r0; ziÞ ¼
2πm

h2
∑

na0

1
kn
Hn

n0ðr; ziÞHn0ðr0; ziÞ
Z
D
e2πiq�ðr� r0 Þ dq ð8Þ

and v¼ hk0=m.
The total signal from inelastic transitions at different depths zi

is the incoherent sum

IðRÞ ¼∑
i
IðR; ziÞ

¼ 2π
hv

∑
i
∬ψ n

0ðR; r; ziÞWðr; r0; ziÞψ0ðR; r0; ziÞ dr dr0: ð9Þ

where, since we are considering the case of a focused coherent
probe, we have made the possible parametric probe dependence P in
Eq. (1) explicit as the probe position R. Let us briefly consider what
all this means for, say, the case of inner-shell ionisation of a particular
edge in a particular atomic species in the specimen. In reality we
consider a slice at depth zi over which we must calculate the
projected potentials Hn0ðr; ziÞ for all possible final states of the
ejected electron for a range of energy losses for the fast electron
and for all pertinent atoms in the slice [43]. Then we incoherently
sum the contributions from all slices in the specimen. We note that,
although the context in which Eq. (9) has been derived is that of a
coherent focused probe, an equation of similar form is pertinent for
the plane wave incidence of conventional transmission electron
microscopy. In that case the dependence on probe position R could
be replaced by the tangential component of the wave vector of the
incident electrons k0t (in many applications zero).

Eq. (9) makes it absolutely clear, through the presence of the
ψ0ðR; r0; ziÞ terms describing the probe in plane zi inside the speci-
men, that the measured signal depends on how the probe wave
function has scattered through the specimen. The dynamic evolu-
tion of the probe via elastic scattering can serve to redistribute
electron probability density to columns other than that on which
the probe is positioned [51], a possibility often referred to as “cross
talk”. Eq. (9) also makes clear that both the amplitude and the phase
of the probe wave field affect the measured intensity, the “effective
scattering potential” Wðr; r0; ziÞ weighting the contribution of the
relative-phase-dependent off-diagonal components of the density
matrix ψ n

0ðR; r; ziÞψ0ðR; r0; ziÞ. This is worth emphasising because, on
the face of it, the first line in Eq. (6) does not depend on the phase of
the wave functions. Further consideration, however, reveals that
while the measurement does not depend on the phase of
Ψ nðR;q; ziÞ in reciprocal space, the distribution of the intensity in
the diffraction plane, and in particular how much falls within as
opposed to outside of the detector aperture D, is highly dependent
on the real-space phase profile of ψnðR; r; ziÞ.

Let us nowmake the link to the mixed dynamic form factor. We
note that in Eq. (8) the transition potentials are separate from the
detector geometry:

Wðr; r0; ziÞ � ~W ðr; r0; ziÞDðr�r0Þ; ð10Þ

where

~W ðr; r0; ziÞ ¼
2πm

h2
∑

na0

1
kn
Hn

n0ðr; ziÞHn0ðr0; ziÞ ð11Þ

and

Dðr�r0Þ ¼
Z
D
e2πiq�ðr� r0 Þ dq: ð12Þ

If we Fourier transform ~W ðr; r0; ziÞ given by Eq. (11) we obtain

~W ðg;g0; ziÞ ¼
2πm

h2
∑

na0

1
kn
Hn

n0ðg; ziÞHn0ðg0; ziÞ; ð13Þ

where

Hn0ðg; ziÞ ¼
Z

Hn0ðr; ziÞe�2πig�r dr: ð14Þ

Defining

Fn0ðg; ziÞ ¼ g2Hn0ðg; ziÞ ð15Þ
and kn as an average value for the set fkng we may then write

~W ðg;g0; ziÞ �
2πm

h2kng2g02
∑

na0
Fn

n0ðg; ziÞFn0ðg0; ziÞ; ð16Þ

which is an exact equality for a fixed energy loss and where the
quantity

Sðg;g0; ziÞ ¼ ∑
na0

Fn

n0ðg; ziÞFn0ðg0; ziÞ; ð17Þ

may be identified as a mixed dynamic form factor [1,38] and takes
into account the interference (i.e. the relative phase) between
Fn

n0ðg; ziÞ and Fn0ðg0; ziÞ.
Now let us return to Eq. (8). If the integration area D is

sufficiently large then the exponential term effectively becomes
a delta function, δðr�r0Þ, and we may make the approximation

Wðr; r0; ziÞ �
2πm

h2
~W ðr; r; ziÞδðr�r0Þ

¼ 2πm

h2
∑

na0

1
kn

Hn0ðr; ziÞj2δðr�r0Þ
��

� 2Vðr; ziÞδðr�r0Þ; ð18Þ
where ~W ðr; r; ziÞ are the diagonal terms in Eq. (11) (anticipating
integration up over the delta function) and the factor of two in the
last line has been inserted for consistency with the conventional
definition of the local effective scattering potential Vðr; ziÞ.

With the approximation in Eq. (18), Eq. (9) reduces to

IðRÞ ¼∑
i
IðR; ziÞ

¼ 4π
hv

∑
i

Z
A
jψ0ðR; r; ziÞj2Vðr; ziÞ dr: ð19Þ

This generic form has previously been derived by several authors,
see for example Refs. [52,53,20]. The cross section is now effec-
tively dependent only on the probe intensity at a point r weighted
by a local potential describing the inelastic scattering. Then only
the diagonal terms ψ n

0ðR; r; ziÞψ0ðR; r; ziÞ ¼ jψ0ðR; r; ziÞj2 of the
density matrix contribute and the measurement is no longer
sensitive to the relative phase of the probe at different spatial
points. This is consistent with our discussion of the phase of the
elastic wave field ψ0ðR; r; ziÞ affecting how much intensity in the
diffraction plane falls inside and outside of the detector D: if the
detector is sufficiently large then all the inelastic intensity for the
class of inelastic interaction we are considering (for example all
electrons that have lost an energy 10 eV above the edge after
ionisation of a particular shell) falls inside the detector, and the
phase of ψ0ðR; r; ziÞ ceases to affect the inelastic signal.

It is worth noting that even if we can make the local potential
approximation in Eq. (18), if we take as our starting point the
mixed dynamic form factor in Eq. (17), then that does not assume a
diagonal form. The Fourier transform of the single-coordinate local
effective scattering potential defined in Eq. (18) is a single-
coordinate “effective scattering factor”. However, this is not the
diagonal of the mixed dynamic form factor defined in Eq. (17).

3. Thermal diffuse scattering

A beam of fast electrons incident on a crystal produces a diffrac-
tion pattern which exhibits several well-known features including
Bragg peaks, a diffuse background, higher-order-Laue-zone rings and
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Kikuchi bands [54]. Phonon excitation (thermal scattering) makes an
important contribution to many of these features, in particular the
diffuse background and Kickuchi lines [55]. Thermal scattering also
makes the essential contribution to high-angle annular dark field
measurements in scanning transmission electron microscopy [56,57].
It also plays an important role in transmission electron microscopy
[58] and convergent beam electron diffraction patterns [59,60].

In using Eq. (9) [or the special case given by Eq. (19)] to
calculate an image due to inelastic scattering, say inner-shell
ionisation, we need to know the probe wave function ψ0ðr; ziÞ at
various depths zi in the specimen. Usually the values zi would
correspond to slices in a multislice formulation to solve the
governing equation for the elastic wave function. However, inelas-
tic scattering, and in particular thermal diffuse scattering due to
the excitation of phonons, leads to loss of flux from the elastic
channel. This can be taken into account using a local absorptive
potential in the Schrödinger equation:

� ℏ2

2m
∇2ψ0ðr; zÞþe½Velasðr; zÞþ iVðr; zÞ�ψ0ðr; zÞ ¼ Eψ0ðr; zÞ; ð20Þ

where Velasðr; zÞ is the potential for elastic scattering and the
absorptive potential for thermal diffuse scattering Vðr; zÞ is for-
mally given in terms of transition potentials as in Eq. (18). Such an
absorptive potential can also be calculated by other means as
discussed by, for example, Refs. [31,55,61]. The absorptive poten-
tial approach is problematic in the sense that, once electrons are
absorbed (have undergone thermal scattering), further (i.e. multi-
ple) thermal scattering is not accounted for in the simulation.
Furthermore, the contribution of thermally scattered electrons to
other inelastic processes (for example ionisation) is not taken into
account. The significance of multiple thermal scattering is illu-
strated in Fig. 5, which compares experimental high-angle annular
dark field (or Z-contrast) images [62], Fig. 5(a), against two
different simulation approaches, Fig. 5(b) and (c). Both experiment
and simulation are on the same scale, and it is thus evident that
the second simulation approach, Fig. 5(c), which is an absorptive
calculation and thus neglects multiple thermal scattering, under-
estimates the number of electrons scattered into the annular
detector. By contrast, good quantitative agreement with experi-
ment is achieved by the first simulation approach, which does
contain multiple thermal scattering. This first approach is the so-
called frozen phonon model.

The frozen phonon model [59,60,63,64] incorporates multiple
thermal scattering and also allows the contribution to other
inelastic scattering events from thermally scattered electrons to
be elucidated [65,66]. Elastic and thermal scattering is treated in a
unified way, as in the later work of Dinges and Rose [67]. The
frozen phonon model is a semi-classical approach based on the
idea that the time taken for the fast electron to traverse the crystal
is much faster than the oscillation period of an atom. Within this
semi-classical model “the electron sees a snapshot of the atom
frozen mid-vibration” [63]. The model assumes that each electron
scatters elastically from a lattice of atoms frozen in position, the
positions being drawn from a set of possibilities defined by
statistical distribution functions which depend on the temperature
factors for the atoms in the specimen. If an Einstein model is
adopted and the crystal is modelled as a set of independent
harmonic oscillators, then an atom has the following probability
distribution for its position τ:

PðτÞp exp½�ðτ�τ0Þ2=2〈u2〉�; ð21Þ
where τ0 is the equilibrium position of the atom and 〈u2〉 is the
mean-squared displacement of the atom. For many materials,
experimental and simulated values for the mean-square displace-
ment, or the closely related Debye–Waller factor, are available in
the literature, see for example Refs. [68,69].

The probability distributions for different electrons are summed
incoherently in the detector plane. In practice this is implemented by
a Monte Carlo integration. The frozen phonon model has produced
simulations that compare well with experiment [62]. However, the
frozen phonon model does not contain within its conceptual frame-
work the momentum or energy transfer one would normally
associate with inelastic scattering (in this case phonon excitation).
Furthermore, from a quantum mechanical point of view one electron
does not “see” a single possible configuration of the system, it
“knows” about all possibilities.

There have been notable investigations into why the frozen
phonon model nevertheless has been remarkably successful. Wang
[70] carried out a term-by-term comparison in series expansion
solutions of the frozen phonon model and the Yoshioka coupled
channels equations (in density matrix form) [71]. More recently,
Van Dyck [72] presented a simpler derivation of equivalence with
a quantum mechanical approach by separating the “elastic” (in the
frozen phonon model the “time” or configuration independent
part) and inelastic scattering intensity. It was shown that each
model predicted the diffracted intensity with an equation of the
same mathematical form as the single inelastic scattering case.

A better model for thermal scattering based on many-body
quantum mechanics, as expressed by the equations of Yoshioka
[71], has been proposed by Forbes et al. [73]. In that approach
phonon excitation is treated as a quantum excitation of the crystal
during which the incident electron is inelastically scattered, losing
energy of the order of mV, with all possible initial configurations
of the system taken into account for that electron. We will refer to
this approach as the quantum excitation of phonons model. If the
same model for atomic displacements is used as in the frozen

Fig. 5. (a) Experimental high-angle annular dark field images of a 105 nm thick
specimen of SrTiO3 along 〈100〉 with intensity variations normalised to the incident
beam intensity (see color scale bar on the right). The strontium columns are the
brightest and the titanium/oxygen columns are the second brightest features (see
unit cell schematic). (b) Frozen phonon image simulations. (c) Absorptive model
simulations (done in a Bloch wave model). Simulations have been convolved with a
0.08 nm FWHM Gaussian to take into account the finite source size. Adapted from
Ref. [62].
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phonon model then this approach yields the same electron
probability density for a single electron in any plane as does the
frozen phonon model for the electron probability density averaged
over many incident electrons. Thus the frozen phonon model
fortuitously yields a result which is operationally the same as that
of the quantum excitation of phonons model for both elastically
and thermally scattered electrons. However, besides being based
on the correct quantum mechanics, an important feature of the
quantum excitation of phonons model is that elastic and thermal
scattering probabilities can be tracked separately at every stage of
the calculation. In Fig. 6(a) we show the contribution for thermal
scattering from strontium titanate in the diffraction plane.

4. Inner-shell ionisation

Two important modes of imaging are based upon the inelastic
scattering associated with ionisation within the specimen. Elemen-
tal mapping in two dimensions at atomic resolution using electron
energy-loss spectroscopy (EELS) based on inner-shell ionisation has
evolved since it was demonstrated in 2007 [9–12,74] and is now at
the point where it can be used to solve problems of technological
interest [14]. However, unless the detector collection angle is very
large, EELS is a partially coherent imaging mode – by which we
mean, as per Eq. (9), it depends not only on the probe intensity
distribution but also on its phase – and this may hinder simple
interpretation of images. As an alternative to EELS one can use
energy-dispersive x-ray (EDX) analysis, detecting the x-rays which
are emitted subsequent to ionisation. EDX elemental mapping is
an incoherent mode of imaging – by which we mean it is well
described via Eq. (19) without recourse to the more general but
complicated Eq. (9) – and image interpretation may therefore be
simpler than for EELS. EDX imaging is thus more reminiscent of the
widely used technique of high-angle annular dark field imaging, but
with the advantage that elemental information is directly available
for a range of different elements and x-ray peaks. A further
advantage of EDX mapping relative to EELS is the accessibility of
higher energy-loss peaks and their associated increased localisation.
The first two-dimensional atomic resolution elemental maps based
on EDX were published as recently as 2010 [15,16] and considerable
improvements in the quality of such data have followed [17].
Quantification in EDX has recently been addressed [18].

Atomic resolution maps obtained in EELS are based on detect-
ing electrons that have lost energy on transiting through the
specimen due to inelastic scattering and which are scattered into
a range of angles in the forward direction, defined by the
collection aperture of the spectrometer. We then consider the
integrated signal from a subset of those electrons falling into a
suitable energy-loss window above the threshold energy for a
particular core-loss edge. In the EDX imaging mode, when detect-
ing x-rays associated with a particular edge, all possible kine-
matics of the inelastically scattered fast electron are effectively
sampled since there is no restriction to scattering in the forward
direction imposed by the EELS spectrometer. In addition, the
energy window effectively extends over all possible energies
above the threshold. So we expect that EELS with a large detector
aperture and a large energy window, starting at threshold, would
have similar underlying physics to EDX-based elemental mapping.

Allen and collaborators have shown how to calculate, in tandem
with the frozen phonon model, the contribution to the combined
ionisation signal from the elastic and (multiple) thermal diffuse
scattering [65], with a similar approach being presented in Ref. [75].
In essence one uses Eq. (9) repeatedly for an adequate sampling of
different frozen phonon configurations set up using Eq. (21) and
sums the signal from each configuration incoherently. In calculating
an inelastic signal in the quantum excitation of phonons model we

include the same sum over possible initial states of the system, but
now for a single electron. To express this we can write Eq. (9) in the
more general form

IðRÞ ¼ 2π
hv

∑
j;i

Z Z
ψ n

0;jðR; r; ziÞWjðr; r0; ziÞψ0; jðR; r0; ziÞ dr dr0; ð22Þ

the implication being that the functions ψ0ðR; r; ziÞ in Eq. (9) are
calculated for a particular atomic configuration, with concomitant
modification to Eq. (8) and the transition potentials therein. An
energy spectroscopic diffraction pattern calculated in this way is
shown in Fig. 6(b). The functions ψ0;jðR; r; ziÞ are “auxilliary func-
tions” since they no longer directly represent elastic scattering, as
they do for that particular configuration in the frozen phonon
model. In fact it is their coherent average which yields the wave
function describing elastic scattering [73]. Since the transition
potentials for ionisation tend to extend over a notably larger range
than the length scale of atomic thermal motion, we note that a
possible approximation is to use transition potentials at the
equilibrium positions and modify only the ψ0;jðR; r; ziÞ for the
different configurations. Unlike in the frozen phonon model, we
understand how to calculate the signals arising from elastically and
thermally scattered electrons separately. This can afford important
physical insights, as we will see shortly.

Fig. 6. (a) Contribution from thermally scattered electrons in the diffraction plane
for scattering of 100 keV electrons from a 60 Å thick SrTiO3 specimen formed with
a convergent probe of aperture semi-angle 4.1 mrad positioned over a Sr column
and displayed on a log scale. (b) Simulation of an energy-spectroscopic diffraction
pattern for electrons that have ionised an oxygen K-shell electron for plane-wave
illumination in SrTiO3. The energy filter is set at 1 eV above threshold. The sample
was 200 Å thick.
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It is important to note the conceptual difference between the
synthesis of the frozen phonon model and ionisation on the one
hand and the incorporation of ionisation in the quantum excita-
tion of phonons model. In the former, the total ionisation cross
section is built up by different electrons, each scattering elastically
off a different lattice configuration and then effecting ionisation. In
the latter case we are predicting the ionisation cross section for a
single electron scattering off the specimen elastically and possibly
also thermally with ionisation possible at any stage. Inelastic
scattering is treated in a quantum mechanical setting.

The similarity in the underlying physics for EDX and EELS
mapping, alluded to earlier in this section, is borne out by the
apparently anomalous behaviour sometimes seen in both EELS
and EDX elemental maps for the oxygen K-shell signal in 〈001〉
strontium titanate: substantially more signal is obtained when the
scanning probe is above columns containing both titanium and
oxygen when compared with those containing only oxygen,
despite the density of oxygen in both types of columns being the
same (one atom per 3.905 Å) [76]. Precisely this effect has also
been noted in previous work by Dudeck and coworkers [77].

This conundrum can be understood using the quantum excita-
tion of phonons model. This model allows one to track the
contribution to the measured signal from both elastically and
thermally scattered electrons separately. Considering thermal
diffuse scattering, which is expected to redistribute the electron
flux away from the column, one might initially argue that, for both
the EELS and EDX cases, a lower signal should be obtained when
the probe is on the Ti/O columns than when it is on the O columns.
This view seems reasonable on the basis of previously reported
EELS elemental maps, where it was seen that thermal diffuse
scattering can reduce the signal from a column relative to off-
column probe positions, explained by the depletion of the elasti-
cally scattered probe on the column by thermal scattering [9,78].
However, it is the contribution to the signal from thermally
scattered electrons (those which have already excited a phonon,
perhaps multiple times) that is key to understanding the enhance-
ment of the O K-shell signal seen in the experimental data when
the probe is on the column containing the heavier Ti atoms. Fig. 7
shows the simulated contribution to the signal for conditions
similar to those reported in Ref. [76]. Considering only the
contribution to the elemental map from elastically scattered
electrons, the signal on the Ti/O column is somewhat less than
on the pure oxygen columns, as seen in Fig. 7(b). However, the
contribution on the Ti/O column from thermally scattered elec-
trons is substantially more than when the probe is on pure oxygen
columns, as seen in Fig. 7(b). Electrons are scattered away from the
heavier Ti/O column (both elastically and thermally) and illumi-
nate surrounding oxygen atoms, as shown in Fig. 8, which are
ionised [76]. It is interesting to note that a similar effect is obs-
erved when the probe is on the Sr columns, which contain no
oxygen atoms, as indicated by the peaks in the corners of Fig. 7(b).

5. Software to model imaging based on inelastic scattering

Software has been developed to simulate inelastic scattering using
some of the ideas outlined in this paper and applications made by
several authors. The book by Kirkland [64] can be consulted for details
of simulations using the frozen phononmodel and a small selection of
other relevant papers are Refs. [41,79,80,20,81].

As already pointed out, propagators in 4D are numerically inten-
sive, both in terms of memory requirements and in terms of proces-
sing power. Propagating the inelastic wave functions in 2D rather than
density matrices in 4D makes the numerical calculations tractable. We
are treating each transit of an electron through the specimen
coherently. As per Eq. (14), each individual inelastic wave function

has a well-defined phase, relating to both the phase of the elastic wave
function in the plane of the transition and the transition potential, and
as such it also scatters coherently. We then add the contribution in the
diffraction plane from all possible final states incoherently. This is the
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Fig. 7. Simulated contributions to an EDX elemental map using the signal in the
oxygen K edge in 〈001〉 strontium titanate across a unit cell (a) due to ionisation by
elastically scattered electrons and (b) due to ionisation by thermally scattered
electrons. The projected structure is indicated: Sr columns green circles, visible O
columns yellow circles and the arrow indicates the position of the Ti/O column.
Parameters used: accelerating voltage 200 kV, probe-forming convergence semi-
angle 23 mrad and specimen thickness 700 Å. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
article.)

Fig. 8. Depth-integrated real-space distribution of thermally scattered electrons for
a thickness of 700 Å with the probe positioned over a Ti/O column in 〈001〉
strontium titanate. The specimen structure is overlaid. A logarithmic transforma-
tion x-log ð1þCxÞ, where x is the pixel value and C ¼ 104, has been applied to the
calculated results to highlight interesting features. Parameters used are the same as
those noted in Fig. 7.
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approach which has effectively been adopted in Refs. [20,41] and
subsequent work based on these publications.

Here we will describe a software package which has mainly
been developed at the University of Melbourne, but some of its
underpinnings are from earlier Bloch wave code which was largely
developed by Chris Rossouw. Historically, the package was devel-
oped with an emphasis on imaging in scanning transmission
electron microscopy (STEM) and for that reason is dubbed μSTEM.
To date version 1.0, which simulates elastic and thermal scattering
in the quantum excitation of phonons model, has been released for
download [82]. The code is also capable of simulations in the so-
called absorptive model described early in Section 3. Similar
calculations can also be carried out for conventional transmission
electron microscopy.

Concurrent with the publication of this paper, version 2.0 of μSTEM
is being released. This version is capable of modelling elemental
mapping using EELS and EDX analysis based on inner-shell ionisation.
In μSTEM it is assumed that the EELS detector covers the whole
solid angle, because this makes it possible to compactly parametrise

scattering factors for a wide range of pertinent inner-shell ionisation
edges as a function of the magnitude of the momentum transfer and
energy loss, so that the local potential in Eq. (18) can be rapidly
calculated. However, for large but finite detectors, even those with
collection angles two to three times larger than the probe-forming
aperture semi-angle, there can be considerable (mostly thermal)
scattering outside of the detector of the probe electrons subsequent
to causing ionisation events. This produces a discrepancy between the
experiment, in which electrons scattered outside the detector do not
contribute to the measured signal, and the simulations, in which the
assumption of a detector spanning the whole solid angle includes the
contribution from such electrons. Zhu et al. [83] recently proposed
correcting experimental images for this sort of discrepancy by dividing
the experimental maps by a normalised “incoherent bright field”
image, the image formed with the same detector collection angle as
the EELS image but integrated over the full energy range, elastic and
thermal scattering included. We note that an alternative approach is to
multiply the simulated EELS map, assuming a detector covering
the whole solid angle, by a simulated incoherent bright field image

Fig. 9. Images calculated using μSTEM, as described in the text, using 100 keV electrons on a 300 Å thick specimen of [0001] Si3N4. (a) Exit surface intensity due to elastically
scattered electrons and (b) exit surface intensity due to thermally scattered electrons for plane wave illumination. In (c) and (d) the intensities in parts (a) and (b) after
imaging by an aberration free lens with an aperture of 25 mrad are shown. (e) A position averaged convergent beam electron diffraction pattern calculated using an
aberration-free, coherent probe formed using an aperture of 9.6 mrad with the average taken over the unit cell. (f) The annular bright-field image and (g) a high-angle
annular dark-field image, using a probe formed using a 25 mrad aperture. Inner and outer angles are given in the text. An elemental map based on the energy-dispersive
x-ray signal for the Si K edge is shown in (h) and for the N K edge in (i), using a probe forming aperture of 25 mrad. Each image is displayed on its own contrast scale.
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assuming a detector with collection angle equal to that in the
experiment (and expressed as a fraction of the incident intensity). In
the quantum excitation of phonons model both elastic and thermally
scattered electrons are included in the correction (other inelastic
processes are a small contribution). In the absorptive model only
elastically scattered electrons are included. The corrected map is also
automatically generated by the code. This is an approximate approach.
Exact calculations using the more general “nonlocal” formulation in
Section 2 are of greater complexity and impose a substantial computa-
tional burden. Such calculations have been used when exploring
subtle effects which arise when the acceptance angle of an energy-
loss spectrometer is comparable to the angle of the aperture used to
form a scanning probe, such as the “volcanos” shown in, for example,
Refs. [84,85]. EDX maps are formed by integrating over all possible
energies above the ionisation threshold and no correction is necessary
for scattering outside a detector aperture, as in the case of EELS. This
follows since the emission of x-rays, resulting from the filling of holes
subsequent to ionisation events, occurs isotropically for all possible
energy losses and kinematics. The x-ray signal is assumed to be
proportional to the energy-loss signal calculated in this way – see for
example Refs. [86] and references therein. Further details and infor-
mation are in a manual [87], which, together withμSTEM 2.0, can be
downloaded from the internet [82].

Fig. 9 shows a sample of the various imaging modes that can be
simulated using μSTEM 2.0. We assume 100 keV electrons incident
on a 300 Å thick specimen of Si3N4 down the [0001] zone axis. In
Fig. 9(a) we show the intensity at the exit surface of electrons which
have been elastically scattered in the specimen and in (b) the int-
ensity of electrons that have been thermally scattered, both for
plane wave illumination. Fig. 9(c) and (d) shows the intensities in
parts (a) and (b) after the exit wave has been imaged by an
aberration free lens with an aperture of 25 mrad. Fig. 9(e) is a
position averaged convergent beam electron diffraction pattern for-
med using an aberration-free, focused coherent probe with a probe-
forming aperture of 9.6 mrad (averaged over the unit cell). Fig. 9
(f) shows an annular bright-field image (inner and outer angles 12.5
and 25 mrad) and Fig. 9(g) a high-angle annular dark-field image
(inner and outer angles 60 and 160 mrad), once again for a probe
formed using a 25 mrad aperture. An elemental map based on the
energy-dispersive x-ray signal for the Si K edge is shown in Fig. 9
(h) and on the N K edge in Fig. 9(i), once again using a probe
forming aperture of 25 mrad.

6. Summary and conclusions

Starting with the early pioneering work of Harald Rose, we
have reviewed progress in the imaging at atomic resolution based
on the inelastic scattering of electrons over the last three decades,
in particular the theoretical aspects. Applications to high-angle
annular dark-field imaging and elemental mapping using electron
energy loss spectroscopy or energy dispersive x-ray analysis have
been discussed in some depth. The software package μSTEM 2.0,
capable of simulating various imaging modes based on inelastic
scattering in scanning transmission electron microscopy, and to a
lesser extent in conventional transmission electron microscopy,
has been introduced.
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